
(1) FEASIBLE PATTERNS

KNURLING PROFILE	KNURL		FEED AXIS L			AXIS R	F	R
RAA	AA	AA	\checkmark	\checkmark				
RGE 30°	BL30							
RGE 45°	BR30	BR30	\checkmark	\checkmark				
	BR45	\checkmark	\checkmark	\checkmark				

The M2 form knurling tool is conceived for knurling on pieces with diameters between 8 and 200 mm .
(2) CLAMPING AND SETTING THE TOOL TO THE MACHINE

First, we need to make sure that the knurl rotates freely around the pin. Spread graphite grease if necessary.
Clamp the tool to the turret of the lathe.
While the chuck rotates very slowly, approach the tool to the workpiece until the knurl makes contact with the workpiece.
Approach the knurl to the workpiece following the 'F' direction up until the teeth plunge a little into it. Check out the resulted print. The printed width (h) must be equal to the width of the teeth on the knurl. If the width isn't correct, change the clearance angle. The tool and the workpiece need to be aligned.

(3) KNURLING ON STEPPED WORKPIECES

When knurling stepped workpieces, it is not possible to knurl up to a shoulder.
Using this tool, no knurling should be performed closer to 9 mm from the shoulder itself.
(7) RECOMMENDED SETTINGS

(4) BEGINNING TO KNURL

While the chuck is rotating at the speed recommended, feed the tool so that $1 / 3$ of the width of the knurling wheel gets in contact with the workpiece.
Press the knurl against the workpiece. The value of the radial feed must be according to the conditions recommended on the table 1.
After that, you will be able to feed longitudinally.
To calculate up to what diameter we must deepen with the knurl, we must take into account the height of the tooth (in the case of standard knurls is always equal to half the step) and the increase in diameter that suffers the material.

(5) BEAR IN MIND BEFORE AND WHILE WORKING PROCESS

Make sure that the knurl pins are firmly fastened.
Make sure that the axis of the knurl is aligned with the axis of the workpiece.
Always work plenty of coolant, lubricant or cutting oil.
The working direction, longitudinal advance, will always be against the tool.
(6) TROUBLE SHOOTING

PROBLEM	CAUSE	SOLUTION
Double knurling	Too slow radial feed at the beginning of the knurling	Increase radial feed at the beginning of the knurling*
The perimeter of the workpiece is not an exact multiple of the pitch	Turn a diameter so that the perimeter to be knurled is an exact multiple of the pitch*	
Knurling wheels easily breakable	Knurling too deep	Reduce the depth to values according to the pitch
Knurling wheels wear out too fast	Knurling too deep	Reduce the depth to values according to the pitch
	Working conditions are not adequate	Check cutting speed and traverse feeding speeds

* Sometimes, it is not possible to increase radial feed or it just cannot be radially fed in the workpiece is too weak.

MATERIAL	Ø WORKPIECE (mm)	$\begin{aligned} & \varnothing \text { KNURL } \\ & (\mathrm{mm}) \end{aligned}$	CUTTING SPEED (m/min)	RADIAL FEED (mm/rev)	TRAVERSE FEED PITCH (mm)			
					0.3 $\div 0.6$	0.6 $\div 1.2$	1.2\%1.6	1.6 2.0
Steel 600 $\mathrm{N} / \mathrm{mm}^{2}$	10 $\div 50$	20	25 $\div 55$	$0.05 \div 0.10$	0.20	0.15	0.13	0.10
	$50 \div 100$		30 -60		0.25	0.20	0.15	0.13
	100 -200		$30 \div 60$		0.25	0.20	0.15	0.13
Steel 900 $\mathrm{N} / \mathrm{mm}^{2}$	10 $\div 50$	20	20 -45	$0.04 \div 0.08$	0.15	0.10	0.08	0.06
	$50 \div 100$		25 $\div 50$		0.20	0.15	0.10	0.08
	100 -200		25-50		0.20	0.15	0.10	0.08
Stainless steel	$10 \div 50$	20	20 45	$0.04 \div 0.08$	0.15	0.10	0.08	0.06
	50 $\div 100$		25 $\div 50$		0.20	0.15	0.10	0.08
	100 $\div 200$		25:50		0.20	0.15	0.10	0.08
Cast steel	10 $\div 50$	20	25 45	$0.05 \div 0.10$	0.20	0.15	0.13	0.10
	50 -100		30 $\div 50$		0.25	0.20	0.15	0.13
	100 $\div 200$		30:50		0.25	0.20	0.15	0.13
Aluminium	10 $\div 50$	20	30 -50	$0.05 \div 0.10$	0.20	0.15	0.10	0.06
	$50 \div 100$		35 $\div 60$		0.25	0.20	0.15	0.13
	100 $\div 200$		$35 \div 60$		0.25	0.20	0.15	0.13
Brass	10 $\div 50$	20	35 $\div 55$	$0.05 \div 0.10$	0.25	0.20	0.18	0.15
	50 -100		$40 \div 65$		0.30	0.25	0.20	0.18
	100 $\div 200$		40:65		0.30	0.25	0.20	0.18

